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SUMMARY

We present a lattice Boltzmann model to describe the spreading of droplets on chemically and topo-
logically patterned substrates. As an example, we consider the process by which a Namibian beetle
captures water on its back which is hydrophobic but covered by peaks with hydrophilic tops. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A droplet in contact with a substrate will try to spread to an equilibrium shape determined
by the balance of surface tensions. This process is a�ected by the presence of surface inhomo-
geneity which may pin the drop, change its equilibrium shape and alter its spreading dynamics.
This has usually been viewed as a nuisance in experiments and applications. However, with
the advent of microfabrication techniques, it is becoming possible to harness controlled surface
topologies to explore new physical phenomena.
A nice example is the way certain beetles living in the Namibian desert collect drinking

water on their backs from a fog-laden wind [1]. Large water droplets form by virtue of the
insect’s bumpy surface, which consists of alternating hydrophobic and hydrophilic regions.
The size of the drops then allows them to move against the wind into the beetle’s mouth.
The aim of this paper is to present a lattice Boltzmann algorithm which can be used to in-

vestigate the behaviour of droplets on patterned substrates. Lattice Boltzmann is a particularly
appropriate approach in that it solves the Navier–Stokes equations but also inputs the thermo-
dynamic information, such as surface tensions, needed to describe the behaviour of droplets.
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Moreover its natural length scale, for �uids such as water, is of order microns where much of
the exciting new physics is expected to appear. The method has already shown its capability
in dealing with spreading on surfaces with chemical [2] and topological patterning [3].
In Section 2 we summarize the algorithm and describe the new thermodynamic and velocity

boundary conditions needed to treat surfaces with topological patterning. In Section 3 we
present results reproducing the way in which a beetle can capture water from a surroun-
ding fog.

2. THE MESOSCOPIC MODEL

We consider a liquid–gas system of density n(r) and volume V . The surface of the substrate
is denoted by S. The equilibrium properties are described by the free energy

�=
∫
V

(
 b(n) +

�
2
(@�n)

2
)
dV +

∫
S
 c(n) dS (1)

 b(n) is the free energy in the bulk. We choose a Van der Waals form

 b(n)=pc(�n + 1)2(�2n − 2�n + 3− 2��w) (2)

where �n=(n−nc)=nc, �w=(Tc−T )=Tc and pc = 1
8 , nc =

7
2 and Tc = 4

7 are the critical pressure,
density and temperature, respectively, and � is a constant typically equal to 0:1. The bulk
pressure

pb =pc(�n + 1)2(3�2n − 2�n + 1− 2��w) (3)

The derivative term in Equation (1) models the free energy associated with an interface. �
is related to the surface tension.  c(ns)=�0 − �1ns + · · · is the Cahn surface free energy [4]
which controls the wetting properties of the �uid.
The lattice Boltzmann algorithm solves the Navier–Stokes equations for this system.

Because interfaces appear naturally within the model it is particularly well suited to look-
ing at the behaviour of moving drops.

2.1. The lattice Boltzmann algorithm

The lattice Boltzmann approach follows the evolution of partial distribution functions fi on
a regular, d-dimensional lattice formed of sites r. The label i denotes velocity directions and
runs between 0 and z. DdQz + 1 is a standard lattice topology classi�cation. The D3Q15
lattice we use here has the following velocity vectors vi: (0; 0; 0), (±1;±1;±1), (±1; 0; 0),
(0;±1; 0), (0; 0;±1) in lattice units.
The lattice Boltzmann dynamics are given by

fi(r+�tvi ; t +�t)=fi(r; t) +
1
�
(feqi (r; t)− fi(r; t)) + nvi�F� (4)

where �t is the time step of the simulation, � the relaxation time, F is a body force (Einstein
notation is understood for �) and feqi the equilibrium distribution function which is a function
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of the density n=
∑z

i=0 fi and the �uid velocity u, de�ned through the relation

nu=
z∑

i=0
fivi (5)

The relaxation time tunes the kinematic viscosity as [5]

�=
�r2

�t
L4
L2

(
� − 1

2

)
(6)

where �r is the lattice spacing and L2 and L4 are coe�cients related to the topology of the
lattice. These are equal to 3 and 1, respectively, when one considers a D3Q15 lattice.
It can be shown [6] that Equation (4) reproduces the Navier–Stokes equations of a non-ideal

gas if the local equilibrium functions are chosen as

feqi = A� + B�u�vi� + C�u2 +D�u�u�vi�vi� +G���vi�vi�; i¿0

feq0 = n −
z∑

i=1
feqi

(7)

where Einstein notation is understood for the Cartesian labels � and � (i.e. vi�u�=
∑

� vi�u�)
and where � labels velocities of di�erent magnitude. A possible choice of the coe�cients is [7]

A� =
w�

c2
(
pb − �

2
(@�n)2 − �n@��n+ �u�@�n

)

B� =
w�n
c2

; C�= − w�n
2c2

; D�=
3w�n
2c4

G1�� =
1
2c4
(�(@�n)2 + 2�u�@�n); G2��=0

G2�	 =
1
16c4

(�(@�n)(@	n) + �(u�@	n+ u	@�n))

(8)

where w1 = 1
3 , w2 =

1
24 and c=�r=�t.

2.2. Wetting boundary conditions

The major challenge in dealing with patterned substrates is to handle the boundary conditions
correctly. We consider �rst wetting boundary conditions which control the value of the den-
sity derivative and hence the contact angle. For �at substrates a boundary condition can be
established by minimizing the free energy (1) [4]

ŝ · ∇n= − �1
�

(9)

where ŝ is the unit vector normal to the substrate. It is possible to obtain an expression
relating �1 to the contact angle 
 as [8]

�1 = 2��w
√
2pc� sign

(�
2

− 

) √

cos
�
3

(
1− cos �

3

)
(10)

where �= cos−1(sin2 
) and the function sign returns the sign of its argument.
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Equation (9) is used to constrain the density derivative for sites on a �at part of the
substrate. However, no such exact results are available for sites at edges or corners. We work
on the principle that the wetting angle at such sites should be constrained as little as possible
so that, in the limit of an increasingly �ne mesh, it is determined by the contact angle of the
neighbouring �at surfaces.
For edges (labels 9–12 in Figure 1) and corners (labels 1–4) at the top of the post each

site has 6 neighbours on the computational mesh. Therefore, these sites can be treated as bulk
sites.
At bottom edges where the post abuts the surface (labels 13–16 in Figure 1) density

derivatives in the two directions normal to the surface (e.g. x and z for sites labelled 13)
are calculated using

@zn= @x=yn= − 1√
2
�1
�

(11)

where the middle term constrains the density derivative in the appropriate direction x or y.
At bottom corners where the post joins the surface (labels 5–8 in Figure 1) density deriva-

tives in both the x and y directions are known. Therefore, these sites are treated as planar
sites.
In a hydrodynamic description of wetting contact line slip must be introduced in some way.

As with other phase �eld models slip appears naturally within the lattice Boltzmann framework
[9]. The mechanism responsible for the slip is described in some detail in Reference [8].
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Figure 1. Sketch of a post on a substrate. Encircled numbers label sites in di�erent topo-
logical positions. Labels 26 and 27 denote sites on the bottom (z= zmin) and the top

(z= zmax) of the domain, respectively.
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2.3. Velocity boundary conditions

We impose a no-slip boundary condition on the velocity. Because the collision operator (the
right-hand side of Equation (4)) is applied at the boundary the usual bounce-back condition
is not appropriate as it would not ensure mass conservation [10].
Indeed after applying Equation (4) there are missing �elds on the substrate sites because

no �uid has been propagated from the solid. Missing �elds are determined to ful�ll the
no-slip condition given by Equation (5) with u=0. This does not uniquely determine the
fi’s. For most of the cases (i.e. 1–20) arbitrary choices guided by symmetry are used to close
the system. This is no longer possible for sites 21–27 where four asymmetrical choices are
available. Selecting one of those solutions or using a simple algorithm which chooses one of
them at random each time step leads to very comparable and symmetrical results. Hence we
argue that an asymmetrical choice can be used. See Reference [3] for a listing of the possible
conditions.
The conservation of mass is ensured by setting a suitable rest �eld, f0, equal to the dif-

ference between the density of the missing �elds and the one of the �elds entering the solid
after collision.

3. WATER CAPTURE BY A DESERT BEETLE

As an example we consider the process by which a beetle species living in the Namib Desert
collect drinking water on its back from a fog-laden wind [1].
The beetle’s back is covered by tiny peaks of diameter 0:5mm. The whole structure except

the top of the peaks is coated in wax which forms a bumpy hydrophobic surface, whereas
the top of the peaks are hydrophilic.
By tilting its body forwards into the wind, the beetle collects water from dense fog. The

water condenses into droplets which settle at the top of the peaks. Once the droplets collected
are large enough they spread beyond the peaks and may eventually coalesce with another
neighbouring drop to form a larger drop. This drop is then heavy enough to roll downwards
against the wind to reach the mouth of the beetle.
We demonstrate the ability of our model to deal with patterned substrates by considering a

domain of size Lx ×Ly ×Lz=50×50×30 covered by four lx ×ly ×lz=10×10×5 peaks. The
minimum distance between the centers of the peaks is 20. The equilibrium contact angle is set
to 70◦ on every surface site apart for those located at the top of the peaks where it is equal
to 35◦. The surface tension and the viscosity are tuned by choosing parameters �=0:002
and �=0:8, respectively. The liquid density nl and gas density ng are set to nl = 4:128 and
ng = 2:913 and the temperature T =0:4. The system is initialized with a gas density greater
than the equilibrium value (n0g = 3:07) and a body force F=(0; 0;−8e−8) is imposed to play
the role of gravity.
We note that the density ratio of liquid and gas is unphysically small: this is necessary to

achieve a stable simulation and must be taken into account when mapping onto physical time
scales.
Simulation results are presented in Figure 2. Fluid initially condenses at the top of the peaks

because of their hydrophilic nature. Due to the high water saturation, the droplets continue
to spread beyond the hydrophilic area until coalescing to form a bumpy ring. Surface tension
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Figure 2. Fog condensing on a beetle’s back. The top of the posts are hydrophilic, the remainder of
the substrate is hydrophobic. t labels the time in simulation units.

forces the ring to shrink and eventually to form a single droplet which may be su�ciently
large to roll into the wind to reach the beetle’s mouth.

4. CONCLUSION

We have de�ned a lattice Boltzmann algorithm describing the spreading of a droplet on
patterned substrates. As an example, we have used the model to reproduce the way a Namib-
ian beetle captures water on its back from a fog-laden wind. Our simulation results are in
qualitative agreement with the literature [1].
The chemical patterning on the beetle’s back is essential to control the formation of the

water droplets. It is less obvious why topological patterning has also evolved. Experiments
have suggested the arrangements of the peaks is important in helping to guide the �ow
towards the beetle’s mouth. The peaks might also slow down the wind velocity acting against
the droplets. Moreover, the peaks might increase the contact angle of the hydrophobic region
of the substrate [11] aiding the run-o�. Further simulations are underway to investigate these
questions.
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